Marine ferromanganese crust deposits are potential mineral resources that contain base metals and strategic and critical elements such as cooper (Cu), cobalt (Co), vanadium (V), nickel (Ni), titanium (Ti), platinum group elements (PGEs) or rare earth elements (REEs). Traditionally, marine precipitates are defined as: a) purely hydrogenetic when all constituents are derived from cold seawater, (b) diagenetic, when all constituents are derived from cold sediment pore water; and (c) hydrothermal when precipitation occurs in the vicinity of hydrothermal vent sites from fluids with temperatures higher than ambient bottom waters. Hydrogenetic Fe-Mn crusts occur throughout the global ocean on seamounts, ridges and plateaus, where currents have kept the rocks free of sediment for millions of years. Some ferromanganese (Fe-Mn) crusts exhibit a mixed origin, primarily either hydrothermal-hydrogenetic or hydrogenetic-diagenetic (Hein et al., 2000; 2003; 2013; Muiños et al. 2013; Bau et al., 2014; Marino et al., 2017). In many places, marine phosphorites are accompanied by Fe-Mn crust mineralisations on the seafloor of continental shelves and slopes along the western continental margins of the Atlantic Ocean. Some thick Fe-Mn crusts also contain carbonate fluorapatite, which was incorporated into the crusts during specific periods prior to middle Miocene during main Cenozoic episodes of phosphatization. These deposits are related to strong upwelling along the continental margins and seamounts. Marine phosphorites are known to concentrate rare earth elements and yttrium (REY) during early diagenetic formation (Hein et al., 1993; 2016; González et al., 2016). Although there are several references to ferromanganese crusts and their association with phosphorites in the literature, the genetic models for explaining their relationship and metal concentration are still poorly understood.
CRS: Local - depth (http://www.opengis.net/def/crs/EPSG/0/1049)
vector
Characterise the deposit type (ferromanganese crusts or phophorites) by compiling relevant data on the classification, geological setting, terrain, age, mineralogical and chemical composition, morphology, textural types, and other controlling parameters. • Characterize the trace element content of the deposit type including Critical Raw Materials (CRM) for base, noble and technological metals. Study controlling factors on the occurrence of CRM. • Identify the principal metallogenic provinces where such deposits occur, taking into account spatial and temporal attributes, and provide models of formation. • Develop harmonized mineral maps and datasets of ferromanganese crusts and phosphorites incorporating GSO datasets (geophysics or samples geochemistry), along with mineral-potential and prospectivity maps. Settings and locations of marine minerals on the EU´s Critical Raw materials list. • Demonstrate how the case study results can be used in mineral exploration
Geological Survey of Spain (IGME)
Javier Gonzalez
Instituto Geológico y Minero de España,
C/ Ríos Rosas,
28003,
Spain
Data modeling used D2.8.III.21 Data Specification on Mineral resources - Technical Guidelines to generate data schema for Ferro-manganese Crusts data produced by EMODnet Geology WP7 Minerals and MINDeSEA WP8 Link to Information Plaform for MINDeSEA WP4 Ferro-manganese crusts, phosphorites and Critical Raw Materials. The INSPIRE MineralResourcesCore UML class diagam applied for the spatial data attributes includes the following feature types: MineralOccurrence, Mine, MiningActivity, MineralDepositModel. The MINDeSEA WP4 applies the following tables: Chemistry, economic, environment, metallogeny, other and phosphoritesCriticalRawMaterials as agreed by the WP4 and WP8 leaders.